Geometric Modeling

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Bird's eye view of the course

Lecture topics:
I. Basics of shape modeling
II. Curves and surfaces
III. Transformations
IV. Solid modeling
V. Procedural modeling
VI. Applications

Geometric Modeling

Implicit Curves
and Surfaces

Contents

- Point membership rule
- Implicit curves
- Algebraic surfaces
- Skeletal implicit surfaces
- Convolution surfaces

Point Membership Rule

Implicit curves and surfaces

A set of points on a 2D plane with

$$
f(x, y)=0
$$

is called an implicit curve

A 2D area (piece of plane, planar area, 2D solid) is defined as

$$
f(x, y) \geq 0
$$

with the implicit curve as its boundary.

Circle and Disk

$$
f(x, y)=R^{2}-x^{2}-y^{2}
$$

Disk (k=2) $\quad f(x, y) \geq 0$
Circle (k=1) $\quad f(x, y)=0$

Ellipse

$$
F(x, y)=1-(x / a)^{2}-(y / b)^{2}
$$

$$
F(x, y)=1-\left(\left(x-x_{0}\right) / a\right)^{2}-\left(\left(y-y_{0}\right) / b\right)^{2} ?
$$

Superellipse

$$
F(x, y)=1-(x / a)^{n}-(y / b)^{n}
$$

Lemniscate of Bernoulli

$\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$

The lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse The curve has become a symbol of infinity and is widely used in math.

"Implicit" Surfaces

A set of points with

$$
f(x, y, z)=0
$$

is called an "implicit" surface

Is the term "implicit" correct?

Explicit or "Implicit"?

Two ways to define \boldsymbol{Z} as a function of $\boldsymbol{X}, \boldsymbol{y}^{\text {: }}$

1) Explicit form

$$
z=\phi(x, y)
$$

2) Implicit form

$$
f(x, y, z)=0
$$

Both forms are not enough to define a sphere, only a hemi-sphere.

Iso-valued surface

$$
\xi=f(x, y, z)
$$

is an explicit function of three variables

$$
\xi=0 \text { or } f(x, y, z)=0
$$

is an iso-valued surface(isosurface) of a function of three variables
(or an "implicit" surface as the historical accident)

"Implicit" Surface - OK

Implicit Function - NO

3D Solids

A 3D solid is defined as

$$
f(x, y, z) \geq 0
$$

Isosurface $\mathrm{f}=0$ or "implicit" surface is the boundary of this solid.

Classes of implicit surfaces

- Algebraic surfaces

- Skeletal implicit surfaces
- Convolution surfaces

Algebraic Surfaces

Surfaces with polynomial $f(x, y, z)$

- Quadratic
- Sphere
- Ellipsoid
- Cylinder
- Cone
- Paraboloid, ...
- Torus
- Superellipsoids

Sphere and Solid Ball

Sphere surface:

$$
R^{2}-x^{2}-y^{2}-z^{2}=0
$$

Solid ball:

$R^{2}-x^{2}-y^{2}-z^{2} \geq 0$

Ellipsoid

$$
F(x, y, z)=1-(x / a)^{2}-(y / b)^{2}-(z / c)^{2}
$$

Torus

$F(x, y, z)=r_{0}^{2}-x^{2}-y^{2}-z^{2}-R^{2}+2 R \sqrt{ } x^{2} \overline{+y^{2}}$

Superellipsoids

$$
f(x, y, z)=1-\left[\left(\frac{x}{r_{x}}\right)^{\frac{2}{s_{2}}}+\left(\frac{y}{r_{y}}\right)^{\frac{2}{s_{2}}}\right]^{\frac{s_{2}}{s_{1}}}-\left(\frac{z}{r_{z}}\right)^{\frac{2}{s_{1}}}
$$

s_{1} and $\mathrm{s}_{2}-$ shape control parameters

Chebyshev Polynomial

Skeletal Implicit Surfaces

Blinn [1982]:
modeling isosurfaces as
a side effect of visualizing electron density fields

Skeletal Implicit Surfaces

Skeletal model elements:

- Skeleton (points, lines and others);
- Scalar field with an individual skeleton element as a source;
- Global field as an algebraic sum of individual fields;
- Level (or threshold) of the field value defining the isosurface of interest.

Skeletal Implicit Surfaces

Skeletal Surface Definition

$$
\begin{gathered}
F(P)-T=0 \\
\text { with } \quad F(P)=\sum_{i=1} c_{i} F_{i}\left(r_{i}\right)
\end{gathered}
$$

N is the number of skeletal elements,
F_{i} is the individual scalar field,
(blending function) of the i-th element,
r_{i} is the distance from P to the i-th element,
T is the threshold (or level value).
Blobby models, metaballs, soft objects

Blobby Model

Blinn [1982]:

$$
\begin{gathered}
F_{i}\left(r_{i}\right)=b_{i} e^{-a_{i} r_{i}^{2}} \\
r_{i}=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}}
\end{gathered}
$$

(x, y, z) are coordinates of the given point P,
$\left(x_{i}, y_{i}, z_{i}\right)$ are coordinates of the i-th skeleton point

Properties:

- Exponential field does not fall to zero;
- All elements contribute to the field in any point (global influence);

Nishimura et al. [1985]:

$$
f(r)=\left\{\begin{array}{l}
b\left(1-3 r^{2} / d^{2}\right), 0<r \leq d / 3 \\
1.5 b(1-r / d)^{2}, d / 3<r \leq d \\
0, r>d
\end{array}\right.
$$

r is distance to the skeleton point, d is its radius of influence

Soft objects

G. Wyvill et al. [1986]:

$$
f(r)=\left\{\begin{array}{l}
1-\frac{22 r^{2}}{9 d^{2}}+\frac{17 r^{4}}{9 d^{4}}-\frac{4 r^{6}}{9 d^{6}}, 0<r \leq d \\
0, r>d
\end{array}\right.
$$

Other Skeletal Elements

- Straight line segment
- Parametric curve
- Polygon
- Parametric surface
- Numerical distance calculation
- Unwanted bulges

The Soft Train (1986)

$$
\mathrm{F}_{\text {woan }}(\mathbf{P})=\sum_{i=1}^{i=1} \mathrm{c}_{\mathrm{i}}^{\mathrm{F}} \mathrm{i}\left(\mathbf{r}_{\mathrm{i}}\right)
$$

Slide courtesy of Brian Wyvill

SOFT (SIGGRAPH 1986)

Courtesy of Brian Wyvill

Convolution Integral

$$
f(X)=\int_{R^{3}} s(P) h(X-P) d P
$$

- $s(X)$ is a predicate function defining geometry of the skeletal element
- $h(X)$ is a convolution kernel Heavy numerical calculations

Superposition of Convolutions

$$
h \otimes\left(s_{1}+s_{2}\right)=h \otimes s_{1}+h \otimes s_{2}
$$

\otimes means convolution
${ }^{-} s_{1}+s_{2}$ means union of skeletal elements
h is the kernel

Analytical Solutions

$$
h(X)=1 /\left(1+a^{2}\|X\|^{2}\right)^{2}
$$

Sherstyuk [1998]:

- Point
- Segment
- Circular arc
- Triangle
- Plane

Images courtesy of Andrey Sherstyuk

Images courtesy of Andrey Sherstyuk

Advantages of Skeletal Models

- Intuitive representations for natural objects (molecular shapes, liquid and melting objects, animal and human body);
- Automatic shape blending;
- Skeletons are easily manipulated and displayed;

Advantages of Skeletal Models

- More concise representation than parametric surfaces;
- Complex shapes can be modeled with few primitive elements;
- Easy to add new primitive types by defining a new skeleton or a new field function.

References

- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics: Principles and Practice (2nd Edition in C), AddisonWesley, Reading, MA, 1997.

Computer Graphics
PRINCIPLES AND PRACTICE
Foley • van Dam • Feiner • Hughes

THE SYSTEMS PROGRAMMING SERIES

References

- Introduction to Implicit Surfaces, Ed. J. Bloomenthal, Morgan-Kaufmann, 1997.
- Bloomenthal J., Shoemake K., Convolution surfaces, SIGGRAPH'91, Computer Graphics, vol.25, No.4, 1991, pp.251-256.
- McCormack J., Sherstyuk A., Creating and rendering convolution surfaces, Computer Graphics Forum, Vol. 17, No. 2, 1998, pp. 113-120.
- Wikipedia, www.wikipedia.org
- OpenGL Performer Programmer's Guide, SGI, 2004.

