Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

- Lecture notes
- Seminar handouts are available at http://gm.softalliance.net/
Advice: download and print lecture notes before the next lecture

Functions

Drawing Hands is a lithograph by the Dutch artist M. C. Escher, printed in January 1948.

Functions

- From calculus, you know the concept of a real-valued function f,
which assigns to each number $x \in \mathbf{R}$ one particular value $y=f(x)$, where $y \in \mathbf{R}$.
- Example: f defined by the expression

$$
f(x)=x^{2}
$$

- The notion of a function can be generalized to the concept of assigning elements of any set to elements of any set.

Function: Formal Definition

- For any sets A, B, we say that a function f (or "mapping") from A to $B(f: A \rightarrow B)$ is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Some further generalizations of this idea:
- A partial (non-tota) function f assigns zero or one elements of B to each element $x \in A$.
- Functions of n arguments; relations.

Basic Properties of Functions

- We can represent a function $f: A \rightarrow B$ as a set of ordered pairs $f=\{(a, f(a)) \mid a \in A\}$.
- This makes f a relation between A and B : f is a subset of $A \times B$. But functions are special:
- for every $a \in A$, there is at least one pair (a, b). Formally:
$\forall a \in A \exists b \in B((a, b) \in f)$
- for every $a \in A$, there is at most one pair (a, b). Formally:
$\neg \exists a, b, c((a, b) \in f \wedge(a, c) \in f \wedge b \neq c)$

Graphs of Functions

- Functions can be represented graphically in several ways:

Bipartite Graph

Like Venn diagrams

Graphs of Functions

- A relation over numbers can be represented as a set of points on a plane. (A point is a pair (x, y).)
- A function is then a curve (set of points), with only one y for each x.

Some Function Terminology

- If $f: A \rightarrow B$, and $f(a)=b$ (where $a \in A \& b \in B$), then we say:
$-A$ is the domain of f.
- B is the codomain of f.
$-b$ is the image of a under f.
- a is a pre-image of b under f.
- In general, b may have more than one pre-image.
- The range $R \subseteq B$ of f is $R=\{b \mid \exists a f(a)=b\}$.

Range versus Codomain

- The range of a function may not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Range vs. Codomain Example

- Suppose I declare to you that: " f is a function mapping students in this class to the set of grades $\{A, B, C, D, E\}$."
- At this point, you know $f s$ codomain is: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$, and its range is unknown
- Suppose the grades turn out all As and Bs.
- Then the range of f is $\{\mathrm{A}, \mathrm{B}\}$, but its codomain is

(n-ary) Functions on a Set

- An n-ary function (also: n-ary operator) over S is any function from the set of ordered n tuples of elements of S, to S itself.
- Examples:
- if $S=\{\mathbf{T}, F\}, \neg$ can be seen as a unary operator, and \wedge, \vee are binary operators on S.
- \cup and \cap are binary operators on the set of all sets.

One-to-One Functions

- A function is one-to-one (1-1), or injective, or an injection, if every element of its range has only 1 pre-image.
- Formally: given $f: A \rightarrow B$,
" f is injective" : $\equiv(\neg \exists x, y: x \neq y \wedge f(x)=f(y))$.
- Only one element of the domain is mapped to any given one element of the range.
- For memorizing: each element of the domain is injected into a different element of the range.

One-to-One Illustration

- Bipartite graph representations of functions that are (or not) one-to-one:

One-to-one

Not one-to-one

Not even a function!

Sufficient Conditions for Injection

- For functions fover numbers, we say:
- f is strictly (or monotonically) increasing if $x>y \rightarrow f(x)>f(y)$ for all x, y in domain;
- f is strictly (or monotonically) decreasing if $x>y \rightarrow f(x)<f(y)$ for all x, y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one.
- Examples
$f(x)=x^{3}$
$f(x)=-x^{3}$

Onto (Surjective) Functions

- A function $f: A \rightarrow B$ is onto or surjective or a surjection if its range is equal to its codomain ($\forall b \in B, \exists a \in A: f(a)=b)$.
- An onto function maps the set A onto (over, covering) the entirety of the set B, not just over a piece of it.
- Example: Let f: $\mathrm{R} \rightarrow \mathrm{R}$.
- $f(x)=x^{3}$ is surjective,
- $f(x)=x^{2}$ is not surjective. (Why?)

Illustration of Surjection

Some functions that are, or are not, onto their codomains:

(but not 1-1)

Not Onto
(or 1-1)

Both 1-1 and onto

1-1 but not onto

Identity Function

- For any domain A, the identity function $I: A \rightarrow A$ (variously written, $I_{A}, 1,1_{A}$) is the unique function such that $\forall a \in A, I(a)=a$.
- Some identity functions you already know:
- Summation of a number with 0, multiplication by 1,
- conjunction with True value, disjunction with False value,
- union with empty set \varnothing, intersection with universal set U.
- The identity function is always both one-to-one and onto.

Identity Function Illustrations

Bijections

- A function f is said to be a bijection, (or a one-to-one correspondence, or reversible, or invertible,) if it is both one-to-one and onto, both injective and surjective.
- For bijections $f: A \rightarrow B$, there exists an inverse of f, written $f^{-1}: B \rightarrow A$, which is the unique function such that $f^{-1} \circ f=I_{A}$ where I_{A} is the identity function on A

Some of Key Functions

- In discrete math, we will frequently use the following two functions over real numbers:
- The floor function $L \cdot: \mathbf{R} \rightarrow \mathbf{Z}$, where $\lfloor x\rfloor$ ("floor of $x^{\prime \prime}$) means the largest integer $\leq x$. Formally, $\lfloor x\rfloor: \equiv \max (\{i \in \mathbf{Z} \mid i \leq x\})$.
- The ceiling function $\lceil: \mathrm{R} \rightarrow \mathrm{Z}$, where $\lceil x\rceil$ ("ceiling of x ") means the smallest integer $\geq x$. Formally, $\lceil x\rceil: \equiv \min (\{i \in \mathbf{Z} \mid i \geq x\})$

Visualizing Floor \& Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbf{Z}$, $\lfloor-x\rfloor \neq-\lfloor x\rfloor$ and
$\lceil-x\rceil \neq-\lceil x\rceil$
- Note that if $x \in \mathbf{Z}$,

$$
\lfloor x\rfloor=\lceil x\rceil=x .
$$

Plots with floor/ceiling

- Note that for $f(x)=\lfloor x\rfloor$, the graph of f includes the point $(a, 0)$ for all values of a such that $a \geq 0$ and $a<1$, but not for the value $a=1$.
- We say that the set of points $(a, 0)$ that is in f does not include its limit or boundary point $(a, 1)$.
- Sets that do not include all of their limit points are generally called open sets.
- In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Plots with floor/ceiling: Example

- Plot of graph of function $f(x)=\lfloor x / 3\rfloor$:

Review of Functions

- Notations: $f: A \rightarrow B, f(a), f(A)$.
- Terms:
image, preimage, domain, codomain, range, one-to-one, injection, onto, sujection, bijection
- Inverse function f^{-1} and identity function I_{A}
- $\mathbf{R} \rightarrow \mathbf{Z}$ functions $\lfloor x\rfloor$ and $\lceil x\rceil$.

How do we define sets?

Are functions useful here?

